Test suite for NEIGHCRYS_2.3.0 and DMACRYS_2.3.0

This suite provides a set of files for testing new installations of NEIGHCRYS_2.3.0 and DMACRYS_2.3.0 and above. The comments, instructions and examples below are to supplement information given in the paper describing the DMACRYS programme ${ }^{1}$ and the associated manual, to act as illustrations for users (but not necessarily of best practice, as designed for fast testing).
The directory test\#_testing_REFCODE contains a README and directories including NEIGHCRYS_input, which contains the input files:
REFCODE.res (Crystal structure), bondlengths (define molecule bonds), dmacrys.dma (Distributed multipoles) dmacrys.mols (Molecular Axes) pote.dat/fit.pots/willo1.pots (repulsion-dispersion model).
If you want to run NEIGHCRYS interactively, then the answers you need are in neighcrys_answers.
All the test examples were created on Xenon using the above versions of the codes.

Test\#_molecule\#	Example of \& crystal structure
01_I	Lattice energy minimization with FIT exp-6 potential and distributed multipoles. The example files are for a computational model corresponding to AXOSOW.
02_I	Lattice energy minimization with WILLIAMS potential, where interaction sites on H are shifted, as contrast to 01. The example files are for a computational model corresponding to AXOSOW.
03_II	Lattice energy minimization with a custom potential . The example files are for a computational model corresponding to SOXLEX.
04_II	Lattice energy minimization with a custom potential and without splines. The example files are for a computational model SOXLEX. The input files for NEIGHCRYS are identical to example 3, but the output file (SOXLEX_af395. dmain) has been edited before running DMACRYS.
05_III	Lattice energy minimization of a large Z'>1 unit cell with 15 Å cutoff. The example files are from the CSD entry KAXXAIO2.

06_III	Lattice energy minimization of a large Z'>1 unit cell with $15 \AA$ and without splines. The example files are from the CSD entry KAXXAIO2. The input files for NEIGHCRYS are identical to example 5, but the output file (KAXXAI02. dmain) has been edited before running DMACRYS.	
07_III	Lattice energy minimization of a large Z'>1 unit cell with 30 Å and without splines. The example files are from the CSD entry KAXXAIO2. The input files for NEIGHCRYS are identical to example 5, but the output file (KAXXAIO2 . dmain) has been edited before running DMACRYS.	
08_IV	Lattice energy minimization of a small 2 component system. The example files are for a computational model corresponding to KONTIQ01.	
09_V	Lattice energy minimization of a crystal structure containing a spherical ion. The example files are for a computational model corresponding to FINVAZ.	Cl1
10_VI	Lattice energy minimization of a complex salt. The example files are for a computational model corresponding to WEMGEK.	
11_VII	Properties calculation of a crystal structure. The example files are for a computational model corresponding to CBMZPN10. The NEIGHCRYS output file (CBMZPN_opt_III.dmain) has been edited before running DMACRYS.	

12_VIII	Properties calculation of a crystal structure using an anisotropic repulsion custom potential. The example files are for a computational model corresponding to DCLBEN06. The NEIGHCRYS output file (DCLBEN_beta_abil.dmain) has been edited before running DMACRYS.	
13_V	Properties calculation of a crystal structure containing a spherical ion FINVAZ. The example files are for a computational model corresponding to FINVAZ. This is also a large cell ($C 2 / c \mathrm{Z}=8$), so takes longer to run.	Cl1
14_IX	Lattice energy minimization with pressure. The example files are for the experimentally observed form at high pressure (0.5 GPa) of 4-fluorotoluene (a redetermination was published as YICDIZ01, although the pressure wasn't specified in the CSD entry). The NEIGHCRYS output file (YICDIZ.dmain) has been edited before running DMACRYS to specify the pressure.	
15_X	Lattice energy minimization with induction. The example files are for a computational model corresponding to OBEQUJ.	
16_XI	Symmetry reduction. The example files are for a computational model corresponding to PAPTUX, which corresponds to a transition state. The run which required this symmetry reduction is given for information in the directory reasons.	
17_XII	Pasting. The example files are for TEVSOD, with a molecule optimized using GAUSSIAN being substituted for the crystallographically determined molecular structure.	
18_I	Using default values. This is a run of NEIGHCRYS which uses the default values for filenames. The example files are for a computational model corresponding to AXOSOW.	

19_XIII	A large cubic cell. This run of NEIGHCRYS has a $Z^{\prime}=1$ two-component structure with 24 molecules in the whole cell. It failed with previous versions of the code.	
20_XIII	Use of hessian. This run of DMACRYS uses the hessian output from a previous run of DMACRYS. This would normally be used to speed up a minimisation, either as a restart or where there is a small change in the starting structure or potential model, so that the Hessian from another run is a reasonable approximation.	
21_XIV	Use of extended mode of NEIGHCRYS. This example has a long molecule, which the default settings of NEIGHCRYS cannot see all the atoms as connected. The extended mode of running NEIGHCRYS is required.	
22_XV	Use of damped dispersion. An example for use with non-empirical $\mathrm{C}_{6}, \mathrm{C}_{8}$ and C_{10} dispersion models.	
23_III	Lattice energy minimization of a large $Z^{\prime}>1$ unit cell with 30 Å and with splines. In the case of example 7, the NEIGHCRYS output file (KAXXAI02.dmain) had to be edited manually to double the cutoff distance; this example uses the extended mode of NEIGHCRYS to get a $30 \AA$ A cutoff.	
24_XVI	Use of non-empirical potentials. Illustrating the use of more complex anisotropic repulsion terms and damped dispersion.	
25_XVI	Energy refinement to include polarizability.	

I-AXOSOW 01.lem_fit_AXOSOW \& 02.lem_will01_AXOSOW

This molecule was set as one of the challenges in the Fourth Blind Test of Crystal Structure Prediction. ${ }^{2}$ The starting files are trial crystal structures generated by MOLPAK, with the distributed multipoles (dma) generated using GAUSSIAN ${ }^{3}$ and GDMA, ${ }^{4}$ as in all these examples.

The examples are given to show the differences in the FIT and Williams exp-6 potentials, whose coefficients are given in pote. dat (generic file type) file called fit. pots or will01. pots respectively. The two potentials do not only differ in the coefficients in pote.dat, but critically in the Williams potential has the hydrogen atom interaction sites moved in along the bonds by 0.1 Å to reflect the position of the centre of electron density. Further details of these two potentials, which are widely used for modelling organic crystals are given in the SI of the DMACRYS paper. ${ }^{1}$ The wider range of atomic types and need for NEIGHCRYS to set up the shift the hydrogen interaction site positions for the Williams potential, leads to specific questions in the NEIGHCRYS input. The first difference in the output is the atomic types as seen in the fort. 21 (NEIGHCRYS output), which are used to describe the atoms in the dmacrys.mols, dmacrys.dma and potential (fit.pots or willol.pots in these examples).

I_1 - FIT potential							I_2-Williams potential						
Inequivalent basis atoms							Inequivalent basis atoms						
atom	atomic			input	molecule	invert	atom	atomic			input	molecule	invert
index	number			name	number	flag	index	number			name	number	flag
1	6	C_F1_1	1	C1	1	F	1	6	C_W3_1	1	C1	1	F
2	6	$\mathrm{C}_{-}^{-} \mathrm{Fl}^{-} 2$	2	C2	1	F	2	6	$\mathrm{C}_{-}^{-} \mathrm{W} 3^{-} 2$	2	C2	1	F
3	6	$\mathrm{C}_{-}^{-} 1_{-}^{-}$	3	C3	1	F	3	6	C-W3-3	3	C3	1	F
4	8	$\mathrm{O}_{-}^{-} 1^{-1}$	4	O1	1	F	4	8	O-W1-1	4	01	1	F
5	1	$\mathrm{H}_{-}^{-} 1^{-1}$	5	H1	1	F	5	1	$\mathrm{H}^{-} \mathrm{W1}^{-1} 1$	5	H1	1	F
6	1	$\mathrm{H}_{-}^{-} 1^{-} 2$	6	H2	1	F	6	1	$\mathrm{H}^{-} \mathrm{W} 1^{-} 2$	6	H2	1	F
7	1	$\mathrm{H}_{-}^{-} \mathrm{F}_{-}^{-}$	7	H3	1	F	7	1	$\mathrm{H}^{-} \mathrm{W1}{ }^{-} 3$	7	H3	1	F
8	1	$\mathrm{H}^{-} \mathrm{F1}^{-} 4$	8	H4	1	F	8	1	$\mathrm{H}^{-} \mathrm{W} 1^{-} 4$	8	H4	1	F

The new hydrogen interactions sites required if Williams and foreshortening are requested in the NEIGHCRYS input are also given in fort. 21

This data is used to calculate the distributed multipoles with the H nuclei in the foreshortened positions, using options in GDMA, ${ }^{4}$ to analyse the ab initio wavefunction with the H nuclei in their true positions. Hence, the dma's in the two examples differ: not only in the H atom positions and multipoles, but also the non-hydrogen atoms will have the same positions (relative to the local axis system) but different multipoles because of the change in allocation of the electron density between the sites caused by the shift in H positions. However, as shown below, although the various contributions to the lattice energy change, the total electrostatic contribution to the initial lattice energy
does not change by much compared with the difference in the repulsion-dispersion potential. Note that the change in potential does make a considerable difference to the structure at the lattice energy minimum.

FIT First evaluation of lattice energy	Williams First evaluation of lattice energy
Contributions to lattice energy (eV per unit cell [kJ/mol])	contributions to lattice energy (eV per unit cell [kJ/mol])
$Z=\quad 8$	$Z=\quad 8$
	Ewald summed charge-charge energy....... $=-0.76909972 \mathrm{E}+01[$
Intra-molecular charge-charge energy.... $=-0.78227800 \mathrm{E}+01$ [Intra-molecular charge-charge energy.... $=-0.67563847 \mathrm{E}+01[$
-0.94347178E+02]	-0.81485844E+02]
$\begin{aligned} & \text { Inter-molecular charge-charge energy....= }-0.12016360 \mathrm{E}+01[\\ & -0.14492414 \mathrm{E}+02 \text {] } \end{aligned}$	Inter-molecular charge-charge energy....= -0.93461253E+00[$-0.11271959 \mathrm{E}+02$]
Total charge-dipole energy $=0.20422449 \mathrm{E}+00$ [Total charge-dipole energy $=0.39674038 \mathrm{E}-02[$
$0.24630636 \mathrm{E}+01 \text { Total dipole-dipole energy= } 0.17972682 \mathrm{E}+00[$	$0.47849147 \mathrm{E}-01 \text {] Total dipole-dipole energy= } 0.14317093 \mathrm{E}+00[$
$0.21676078 \mathrm{E}+01$]	$0.17267229 \mathrm{E}+01$] 0.14317
Total charge-dipole+dipole-dipole energy $=0.38395132 \mathrm{E}+00$ [Total charge-dipole+dipole-dipole energy = 0.14713833E+00[
$0.46306713 \mathrm{E}+01 \mathrm{l}$	$0.17745720 \mathrm{E}+01 \mathrm{l}$
Higher multipole interaction energy.... $=-0.75325700 \mathrm{E}+00$ [Higher multipole interaction energy..... $=-0.74209572 \mathrm{E}+00$ [
Total isotropic repulsion-dispersion.... $=-0.20073845 \mathrm{E}+01$ [Total isotropic repulsion-dispersion.... $=-0.21696973 \mathrm{E}+01$ [
-0.24210199E+02] . $=0.00000000 \mathrm{E}+00$ [
Total anisotropic repulsion energy.......= $0.00000000 \mathrm{E}+00$ [$0.00000000 \mathrm{E}+00$]	Total anisotropic repulsion energy.......= $0.00000000 \mathrm{E}+00[$ $0.00000000 \mathrm{E}+00$]
Intermolecular induction energy......... $=0.00000000 \mathrm{E}+00$ [Intermolecular induction energy......... $=0.00000000 \mathrm{E}+00$ [
$0.00000000 \mathrm{E}+00$]	$0.00000000 \mathrm{E}+00$]
	PV energy.. $(\mathrm{P}=0.00 \mathrm{E}+00 \mathrm{~Pa}) \ldots$.
$0.00000000 \mathrm{E}+00]$	$0.00000000 \mathrm{E}+00]$
Total lattice energy......................... $=-0.35783261 \mathrm{E}+01[$ $-0.43156649 \mathrm{E}+021$	Total lattice energy......................... $=-0.36992673 \mathrm{E}+01[$ $-0.44615268 \mathrm{E}+021$

II - SOXLEX 03.lem_custom_spli_SOXLEX \& 04.lem_custom_nospli_SOXLEX

This example shows how the user makes their own definition of the atomic types, and uses an anisotropic atomatom repulsion potential. This crystal structure was set as one of the challenges in the Fourth Blind Test of Crystal Structure Prediction. ${ }^{2}$ The starting files are trial crystal structures generated by MOLPAK, with the dma generated using GAUSSIAN ${ }^{3}$ and GDMA. ${ }^{4}$ The repulsion dispersion potential was generated using SAPT (DFT). ${ }^{5}$

A custom potential has different atomic types from FIT or WILLIAMS. The labels file lists all atoms from the input crystal structure file and assigns them the potential types which are used in the dmacrys.mols, dmacrys.dma and potential (pote.dat) files.

Br2	BR
$\mathrm{Br1}$	BR
Cl	CL
F	FL
C 1	CA
C 3	CC
C 4	CA
C 5	CB
H 1	HY
C 6	CD
C 2	CB
H 2	HY

The anisotropic atom-atom repulsion potential requires the definition of a local axis system for each atom, and the anisotropic potential needs to be defined for every pair of atom types:

Starting excerpt from dmacrys.mols file, showing definition of local axis on a Cl atom

MOLX 1			
X LINE C_CC_2	C_CD_5	3	
Y PLANE $\mathrm{C}_{-}^{-} \mathrm{CC}^{-} 2$	$\mathrm{C}_{-}^{-} \mathrm{CD}_{-}^{-5}$	3 C_CA_1	
ANIS			
ClCL 1			
Z LİNE C C CC ${ }^{2}$	CL ${ }^{1}$		
X PLANE $\overline{\mathrm{C}}_{-} \mathrm{C} \bar{C}_{-}{ }^{2}$	C_C ${ }^{\text {A }}$ _ 1	1 C_CB_6	2

Excerpt from pote. dat file, showing the anisotropic repulsion potential for $\mathrm{Br} . . \mathrm{Br}$

BUCKBrBR 2662.410975	BrBR 0.330736	120.676039	0.0	70.0

ANIS BrBR BrBR
$\begin{array}{cccccc}0 & 0 & 1 & 1 & 0.122057\end{array}$
$\begin{array}{llllll}0 & 0 & 1 & 0 & 1 & 0.122057\end{array}$
$\begin{array}{rrrrrr}0 & 0 & 0 & 2 & 2 & -0.237815\end{array}$
$\begin{array}{llllll}0 & 0 & 2 & 0 & 2 & -0.237815\end{array}$
ENDS

The output has
Total isotropic repulsion-dispersion.... $=$
Total anisotropic repulsion energy...... $=$
65.9171
which is slightly misleading as when a custom (anisotropic) repulsion is used, all the repulsion, isotropic and anisotropic, comes to $65.9171 \mathrm{~kJ} / \mathrm{mol}$ and the dispersion contribution is $-142.2616 \mathrm{~kJ} / \mathrm{mol}$.

NEIGHCRYS automatically sets up the limits used in summing the contributions to the lattice energy. These are a compromise between timing and accuracy and may need changing for different studies. Splines have been introduced rather than abrupt cutoffs in the direct space summations, so to give continuous first derivatives. The effect of splines using the default cutoff (see next example III) is shown, with examples 3 and 4 respectively. The line to bring the splines into play is automatically written out into the * . dmain file.

SPLI 2.04 .0
This is manually removed from example 4, so that the repulsion-dispersion energy stops abruptly at $15 \AA$, which is only marginally longer than the c vector. The effect of the splines is expected to be much larger for this molecule than for III or other C/N/O/H molecules, because the dispersion coefficients for Br and Cl are much larger than for first row atoms, their repulsion is longer range, and they have significant atomic quadrupoles, so the inter atomic potentials at the cutoff can be much larger and not necessarily attractive.

II_3-With splines				II_4-Without splines			
Initial Lattice Energy: Final Lattice Energy:	$\begin{aligned} & -84.6923 \\ & -85.1785 \\ & \hline \end{aligned}$	kJ/mol $\mathrm{kJ} / \mathrm{mol}$		Initial Lattice Energy: Final Lattice Energy:	$\begin{aligned} & -85.8975 \\ & -86.1616 \end{aligned}$	kJ/mol $\mathrm{kJ} / \mathrm{mol}$	
a (Ang)	b (Ang)	c (Ang)	alpha (Deg)	beta a (Ang)	b (Ang)	c (Ang)	alpha (Deg)
beta (Deg) gamma (Deg) $\text { Initial => } 3.8052$	13.7907	14.5314	90.0000	beta (Deg) gamma (Deg)	13.7907	14.5314	90.0000
93.7800 90.0000	13.7907	1.5314	90.0000	93.7800 90.0000	13.7907	14.5314	. 0000
$\begin{array}{cc} \text { Final } & => \\ 92.5989 & 90.0000 \end{array}$	14.0048	14.5186	90.0000	$\begin{array}{cc} \text { Final } \\ 94.4913 & 90.0000 \end{array}$	13.8841	14.6405	90.0000
$\mathrm{F}=8.374435$				$\mathrm{F}=2.759047$			
Total run time.........	2.380000	Total run time..........	1.600000

III - KAXXAIO2 05.largecell_KAXXAI, 06.largecell_KAXXAI_nospli and 07.largecell_KAXXAI_30ang

This example illustrates the use of experimental X-ray structures as input, including when there are two symmetry independent molecules in the asymmetric unit cell. Test 5 uses summation defaults, which are contrasted with other treatments of the direct summation in tests 6 and 7. This molecule, tolfenamic acid, was studied as part of a series of fenamic acids. ${ }^{6}$ The starting file was the crystal structure determination from the CSD, but with the atoms renumbered (to conform to the numbering scheme used in the rest of the series).

Since this is an experimental X-ray structure, the positions of the hydrogen atoms suffer from the systematic foreshortening of bonds to hydrogen. NEIGHCRYS has the question

Do you want to standardise bond lengths to hydrogen?
and the response
$y(e s)$
will automatically change the hydrogen atomic positions by elongating the bond lengths to hydrogen to standard neutron values. ${ }^{7}$ This can make a considerable difference to the results of the modelling. The hydrogen atom positions do not need correcting if the crystal structure has been determined by neutron diffraction, or the molecular structure obtained by ab initio optimisation, as the bond lengths to hydrogen should be similar or more accurate.
Although the two molecules in the asymmetric unit are the same, the axis system must be defined for each molecule, and the distributed multipoles calculated separately for each molecule to reflect the differences in conformation. Generating the dma for a two-component system requires generation of each dma separately (using GAUSSIAN ${ }^{3}$ and GDMA ${ }^{4}$) and the two combined using gdmaneighcrys (supplied with the DMACRYS/NEIGHCRYS release bundle).

Definition of axis system for two molecules

		2	Note that corresponding atoms have been used to define the axis system. However, as the molecules differ in the central torsion angle and hence centre of mass, there are differences in the coordinates of all atoms in the local axis system.

Contrasting the . dma entry for two equivalent atoms in the same molecule.

The molecule itself is quite large, having a distance of $9.79 \AA$ A between the two most separated hydrogen atoms. The cutoff over which DMACRYS calculates intermolecular interactions is written in the *. dma in file by NEIGHCRYS. By default, the limit of the repulsion-dispersion potential is $15 \AA$, and the higher multipole contributions are calculated for all atoms in molecules whose centre of mass are within $15 \AA$. The limit of the repulsion-dispersion in the potential file can be greater than this (it is $70 \AA \AA$ in the files provided with the distribution), but it is overridden by the *. dmain. Ideally the summation limits should not be exactly an integer number of lattice vectors.

The three examples given for the lattice energy minimization of KAXXAIO2 are (5) with NEIGHCRYS defaults of $15 \AA$ cutoffs and splines, (6) with NEIGHCRYS default of $15 \AA$ Å cutoffs, but no splines and (7) with a longer $30 \AA \AA$ cutoff and no splines. Note that since DMACRYS does not know that the two molecules in the asymmetric unit cell are the same molecule, all lattice energies need to be divided by 2 to be strictly in $\mathrm{kJ} / \mathrm{mol}$ and comparable with the lattice energy of the $Z^{\prime}=1$ polymorphs of tolfenamic acid.

III_5-15 Å cutoff and splines	III_6-15 A cutoff without splines	III_7-30 A cutoff without splines
CUTO 28.065000 0.534474 RDMA 0.534474 - - SPLI 2.0 4.0	CUTO 28.065000 0.534474 RDMA 0.534474 . . .	CUTO 28.065000 1.068948 RDMA 1.068948
```Initial Lattice Energy: -268.4195 kJ/mol Final Lattice Energy: -276.3210 kJ/mol```	```Initial Lattice Energy: -267.3524 kJ/mol Final Lattice Energy: -275.3161 kJ/mol```	```Initial Lattice Energy: -271.8905 kJ/mol Final Lattice Energy: -279.7492 kJ/mol```
$\mathrm{F}=20.042020$	$\mathrm{F}=22.245230$	$\mathrm{F}=20.564110$
Total run time... 24.500000	Total run time... 17.740000	Total run time 104.269997

When calculating the interatomic interactions over a larger number of molecules (example 7 with 30 Å limits to interaction calculation), the accuracy of the calculation is much greater as the longer range interactions are included, but the time taken is much longer. Increasing the cutoff or adding splines usually makes the lattice energy slightly lower because the attractive dispersion is the longest range contribution.

## IV - KONTIQ01 08.2comp_KONTIQ

This illustrates using two different molecules in the asymmetric unit, with one being water. Gallic acid monohydrate was set as one of the challenges in the Fifth Blind Test of Crystal Structure Prediction, ${ }^{8}$ to predict the structures of two new polymorphs, with this structure and that of another polymorph already published. It also had the complication of being a hydrate. Further screening resulted in characterising a further monohydrate, i.e. five polymorphs in all. ${ }^{9}$

The starting files in this example are from the end point of a CrystalOptimizer calculation, which optimizes the molecular conformation and crystal lattice together, including generating the .dma using GAUSSIAN ${ }^{3}$ and GDMA ${ }^{4}$ for sufficient conformations that a database can be used to speed these calculations over a large set of crystal structures. ${ }^{10}$ Note that gdmaneighcrys has to be used as part of the process to combine the gallic acid and water dmas.

DMACRYS automatically assigns hydrogen atoms in water molecules as a different atomic type - H_Wa. The exp-6 potential used for the water hydrogens was the same as for other polar hydrogen atoms in this case, but a different
potential could have been chosen for H _Wa without the need to use a custom potential and labels file. Since the pote. dat exp-6 input is required for each pair of atomic types, the crosspot utility supplied with the DMACRYS/NEIGHCRYS release bundle is useful for generating the unlike interaction parameters using the combining rules for extensions to the exp-6 potentials of the FIT or Williams type.

## V - FINVAZ 09.salt_FINVAZ \& 13.properties_FINVAZ

Amantidine hydrochloride is an example of a lattice energy minimization, using the Williams potential, of a salt containing a spherical ion. In this case, the dma is generated for the molecular ion using GAUSSIAN ${ }^{3}$ and GDMA 4 and the resulting dmacrys. dma file is manually edited to add the unit negative charge for the chloride ion. Rotations of the spherical chloride ion are meaningless; hence it does not require an axis system etc. It is also an example of a centred cell, $C 2 / c\left(Z=8, Z^{\prime}=1\right)$.

Salts such as FINVAZ have lattice energies that are orders of magnitude more stabilising than neutral systems, because of the high electrostatic interaction between the two species in the crystal. Nonetheless, as the properties calculation shows, such structures still have phonon modes of comparable frequencies to neutral organic molecules.

## VI - Ephedrinium Tartrate 10.largesalt_WEMGEK

Ephedrinium Tartrate is provided as an example of a lattice energy minimization of a salt with two large molecular components. It is a structure where the hydrogen atoms were positioned following a CSP study. ${ }^{11}$ The same considerations as in previous examples should be made, namely it has large lattice energy, and the dma needs to be calculated separately for the two species and combined using gdmaneighcrys.

## VII - CBMZPN10 11.properties_CBMZPN

DMACRYS can calculate the second derivative properties of the crystal at the lattice energy minimisation, namely the elastic constants ${ }^{12}$ and $\mathrm{k}=0$ phonon frequencies. ${ }^{13}$ This is done with accurate second derivatives of the lattice energy, not the estimates made by updating the Hessian matrix used within the lattice energy minimisation. (These estimated second derivatives are used to calculate an approximate elastic constant matrix and eigenvalues of the Hessian to test whether the Born stability criterion is met, or whether the structure is a transition state, see
16.symmred_PAPTUX ). The elastic tensor is usually aligned so that $z$ is along $c, x$ is parallel to $a$ and $y$ is in the $a b$ plane, but please check fort. 21 for higher symmetry space groups. The lowest eigenvalue and eigenvector of the shear submatrix is calculated as a guide to whether the crystal has a particularly weak plane. A range of properties of a microcrystalline aggregate, by various approximate averaging procedures, ${ }^{14}$ are also reported.

The example of a properties calculation with the FIT potential is for the most stable polymorph of carbamazepine (form III). The example files here are a lattice energy minimum found in a rigid molecule CSP study of carbamazepine.

In order to calculate second derivative properties, it is usual to start at a lattice energy minimum (fort. 16 from a previous standard lattice energy minimisation run) to save the time in minimising with the more expensive and accurate $2^{\text {nd }}$ derivatives calculation. This is why in the example output the lattice energy changes so very little in the fort. 12 and why the goodness of fit ( $F$ ) is so low.

To run a properties calculation, following a NEIGHCRYS run starting from an estimated lattice energy minimum, the *. dmain must be edited to change the line that said "STAR PLUT" to say "STAR PROP" and remove the NOPR directive so that the program uses the most accurate second derivatives. It is also necessary to increase the accuracy of the Ewald summation by adding the line ACCM 100000000 in the section of the *. dma in file that deals with changes to default parameters.

Output from prope	erties calculations	
Zone Centre Phonon F THz	Frequencies cm-1	The first 3 frequencies should be zero, to within
$\begin{array}{r} -0.0 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \end{array}$	$\begin{array}{r} -0.0 \\ 0.000 \\ 0.0000 \\ 0.0000 \end{array}$	numerical error.


1.2704	42.3756	
1.3652	45.5384	
1.4234	47.4784	
1.5027	50.1256	
1.6125	53.7867	
1.6128	53.7961	
1.7326	57.7942	
2.0264	67.5939	
2.0904	76.6281	
2.2966	82.4652	
2.4722	84.4618	
2.5321	86.8428	
2.6035	91.6871	
2.7487	100.1495	
3.0024	102.2815	
3.0663	105.3979	
3.1597	108.1949	
3.2436	127.8800	
3.8337	130.4624	
4.9112	134.3770	

MECHANICAL PROPERTIES CALCULATIED FROM HESSIAN MATRIX


Experimental elastic constants and phonon frequencies are often not available, and the main reason for calculating these properties is to estimate the zero-point vibrational energy and thermal contribution to the Helmholtz free energy. In this example, the resulting *. dmaout file has been automatically analysed to extract the phonon frequencies ${ }^{13}$ and elastic constants. ${ }^{12}$ More recent work by Nyman and Day ${ }^{15,16}$ has developed the use of DMACRYS to converge free energy differences between polymorphs, by using supercells to sample the Brilloiun zone. Their utilities AutoLD, and AutoFree for doing such calculations are included in the release bundle.

```
Average linearly extrapolated Debye frequency:
 (scaled by 1.00000000000000)
 wD (cm-1) = 59.8187608576981
 Average sinusoidaly extrapolated Debye frequency:
 (scaled by 1.00000000000000
 wD (cm-1) = 45.4260764580391
 !! Using this value for the Debye frequency !!
 Zero-Point Energy Calculations:
 ZPE from optical modes (kJ/mol) = 2.57051461579617
 ZPE from acoustic modes (kJ/mol) = 0.152836113079392
 Total ZPE (kJ/mol)=
 2.72335072887557
 entropy worked out for T (K) = 298.000000000000
 Entropy from optical modes (J/molK) = -87.2146696803396
 Debye x = 0.219320687518172
 Debye function = 0.920152602545306
```

thermal E from optical modes (kJ/mol) $=-15.3634642623644$
thermal E from -kTD (x) (kJ/mol) $=-0.569972263210882$
thermal E from -kTD(x) (kJ/mol) = -0.569972263210882
thermal E from second bit (kJ/mol) = -3.0195043865
Total Thermal Energy (kJ/mol) $=-18.9529409121508$
Total Thermal Energy $(\mathrm{kJ} / \mathrm{mol})=$
Vibrational Free Energy (including ZPE) :
Fvib $(\mathrm{kJ} / \mathrm{mol})=-1 \dot{6} .2295901832753$

## VIII - DCLBENO6 12.properties_DCLBEN

This is an example of a properties calculation for the $\beta$ triclinic $\mathrm{P}-1 \mathrm{Z}^{\prime}=0.5$ polymorph of dichlorobenzene with a custom potential using a non-empirically derived atom-atom repulsion-dispersion potential for anisotropic chlorine. ${ }^{17}$ This illustrates the more accurate type of potential that is likely to be needed for studying properties which are very sensitive to the $2^{\text {nd }}$ derivatives, as shown by the comparison with the recorded low temperature spectrum. ${ }^{18}$

VIII_12 from KONTIQ_A2312.dmaout file				Experimental room temperature spectrum ${ }^{18}$
Zone Centre Phonon THz ------0.000 0.00000 0.0000 1.4722 2.0027 3.1102	Frequencies cm-1 ------ 0.0000 0.0000 0.0000 49.1063 66.8034 103.7450			$\mathrm{cm}^{-1}$   Three zero frequency modes, translating entire crystal $56$   65   103 - Fortuitously close!
Only one molecule in the unit cell gives few lattice modes, but the triclinic cell has a full elastic tensor				
Elastic stiffness 23.58876 9.62432 6.02847 3.21779 -2.34157 -3.50538	tensor (Cij): GPa (10**10    9.62432 6.02847   17.06762 6.37537   6.37537 13.46004   2.05584 -1.47659   -0.82018 0.10214   -3.71365 0.10800	$\begin{gathered} \text { DYNE / CM } * * 2) \\ 3.21779 \\ 2.05584 \\ -1.47659 \\ 4.27730 \\ -0.55820 \\ -2.35944 \\ \hline \end{gathered}$	$\begin{array}{r} -2.34157 \\ -0.82018 \\ 0.10214 \\ -0.55820 \\ 3.49188 \\ 2.78290 \\ \hline \end{array}$	$\begin{array}{rr} 57 & -3.50538 \\ 18 & -3.71365 \\ 14 & 0.10800 \\ 20 & -2.35944 \\ 88 & 2.78290 \\ 90 & 9.11696 \end{array}$

## IX - 4-fluorotoluene 14.press_YICDIZ

The starting file in this example is a crystal structure determination where the liquid was forced to crystallize at high pressure and the X-ray data collected under those extreme conditions. ${ }^{19}$

Following the NEIGHCRYS run, the YICDIZ. dmain needs to be edited to add a line to include pressure. "PRES 0.5 GPa" after the CONP directive.

The resulting lattice energy from the fort. 12 is very high because it includes the PV term.

```
Initial Lattice Energy:
Final Lattice Energy:
```

```
-11.4386 kJ/mol
```

-11.4386 kJ/mol
-11.9699 kJ/mol

```
-11.9699 kJ/mol
```


## X - OBEQUIJ 15.induction_OBEQUJ

This illustrates the calculation of induction energy (sometimes called polarization energy, as we are using the longrange part of the induction energy, as calculated from point polarizabilities and multipoles) and lattice energy minimisation, including this term. The inclusion of damped induction and dispersion up to $\mathrm{C}_{10}$ are new features of DMACRYS for research work using non-empirical potentials.

This molecule was set as one of the challenges in the Fifth Blind Test of Crystal Structure Prediction. ${ }^{20}$ The example uses the ab initio optimised molecular structure and has a non-empirical potential (c.f. SOXLEX ${ }^{5}$ derived using CamCASP ${ }^{21}$ ) which has been fitted excluding the induction energy. The modelling of the induction energy using a distributed dipolar polarizability model ${ }^{1}$ is the novel feature of this example. The molecular structure, atomic multipole moments, dipolar polarizability tensors and atom-atom isotropic $\mathrm{C}_{6}$ dispersion coefficients were derived from the PBEO exchange-correlation functional and the Sadlej pVTZ basis set with the Tozer-Handy asymptotic correction. The CUSTOM repulsion-dispersion model assumed that the parameters were transferable between all
hydrogens and the four carbon atoms bonded to hydrogen (see labels file). This proved to be a lousy model potential, giving rise to considerable slippage in the $a b$ plane, from deficiencies in the repulsion-dispersion potential. The $c$ vector is large, so a larger cutoff should be used, but this significantly increases the computer time.

Note that the induction energy has to be iterated to convergence, so there is numerical noise in taking numerical derivatives. Hence the induction energy is only evaluated at a given structure. (i.e. in an optimisation, the induction energy is evaluated at the initial and final structure, and the forces from the induction energy are not used in the minimisation.)

The distributed dipolar polarizabilities are in the file dmacrys.dma.pol, which starts:

```
Static polarizabilities
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
1 \\
\\
2.46 \overline{6} 10^{-1}-
\end{gathered}
\]}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{-0.277986-1.883193-0.000535}} & \multirow[t]{4}{*}{RANK} & \multirow[t]{4}{*}{1} \\
\hline & & & & & & \\
\hline 0.00000 & 14.52040 & & & & & \\
\hline 0.00000 & 4.63450 & 12.08170 & & & & \\
\hline \multicolumn{2}{|l|}{2 C C2_2} & \multirow[t]{2}{*}{0.816974} & \multirow[t]{2}{*}{0.674908} & \multirow[t]{2}{*}{-0.000979} & \multirow[t]{2}{*}{RANK} & 1 \\
\hline \(2.67 \overline{4} 70\) & & & & & & \\
\hline 0.00000 & 23.67240 & & & & & \\
\hline 0.00000 & 4.44500 & 17.25500 & & & & \\
\hline
\end{tabular}
```

This is automatically read-in by NEIGHCRYS provided that the need for induction is specified near the start of the dmacrys.mols file by specifying the induction damping coefficient DIND, for example
X LINE
X LINE C_C2_2 $\qquad$ N_N1 $\qquad$ 1
1
DIND $1.08 \overline{8} 5$
ANIS
C C1 1
$\mathrm{Z}^{-} \mathrm{LI} \overline{\mathrm{N}} \bar{C}^{\mathrm{C}{ }^{\mathrm{C}} 1} 1^{1} \quad \mathrm{O}_{\overline{\mathrm{O}}} \mathrm{O1}_{1}^{1} \quad 1$


In the *.dmaout file, the polarizabilities are written out, and the phrase "Induction damping has been requested" precedes the damping parameters. The induction calculation at the starting structure reports


The induced dipole moments should be modest, reflecting the atoms which are most polarizable, with the induction energy being stabilising and converge in a reasonable number of iterations. The induction energy is written out as a component of the initial and final lattice energy. The initial energies and induced moments should be well reproduced, but minor discrepancies in the final structure and energy may just reflect numerical noise.

Lattice energy minimisation within the constraints of space group symmetry may lead to a structure which is not a true minimum, as detected by considering the eigenvalues of the second derivative matrix ( $\sim$ Born stability criterion). When this happens, then another run in a lower symmetry space-group, usually with more independent molecules in the asymmetric unit cell is required. This example shows the ability of NEIGHCRYS to generate the required new input files and run in lower symmetry.

The anti-inflammatory naproxen was studied because the structure of the marketed enantiopure form was known but not that of the racemate. ${ }^{22}$ The crystal energy landscape showed that the racemic form was more stable, but experimentally it proved impossible to obtain single crystals, so this structure had to be determined from powder Xray diffraction. A good match to the experimental data was obtained by the global minimum of the lattice energy landscape. However this $Z^{\prime}=1$ structure had a negative eigenvalue of the Hessian, showing that it was a saddlepoint. This example demonstrates how the symmetry was lowered to give a true minimum, requiring a second run of NEIGHCRYS and DMACRYS to give a $Z^{\prime}=2$ structure with the small energy lowering ( $\sim 1 \mathrm{~kJ} / \mathrm{mol}$ ). Solid state NMR was used to confirm that structure was indeed $P b c a Z^{\prime}=1$, confirming the estimate that even the zero-point motions would average over the $Z^{\prime}=2 P c a 2_{1}$ lattice energy minima.

The files in the directory reason are the original NEIGHCRYS and DMACRYS runs, showing the fort. 12 detects that the structure is not a true minimum.

Warning - Non-zero eigenvalues found.
A subgroup has a lower energy structure

To find the correct eigenvalue ( $\sim$ symmetry element) to remove, the PAPTUX_CO1.dmaout must be inspected. The relevant section looks like this.

EIGENVALUES FOR	REPRESENTATION	1	1		
$0.54740738 \mathrm{E}+01$	$0.10484391 \mathrm{E}+02$	$0.21314702 \mathrm{E}+02$	$0.28925942 \mathrm{E}+02$	$0.32695686 \mathrm{E}+02$	
$0.58755977 \mathrm{E}+02$					
EIGENVALUES FOR	REPRESENTATION	2			
$0.46788755 \mathrm{E}-13$	$0.41550997 \mathrm{E}+01$	$0.88608361 \mathrm{E}+01$	$0.26927779 \mathrm{E}+02$	$0.34219756 \mathrm{E}+02$	
$0.40828089 \mathrm{E}+02$					
EIGENVALUES FOR	REPRESENTATION	3			
-0.13293712E+01	$0.20725220 \mathrm{E}-13$	$0.84737284 \mathrm{E}+01$	$0.15625808 \mathrm{E}+02$	$0.22016299 \mathrm{E}+02$	
$0.55803587 \mathrm{E}+02$					
EIGENVALUES FOR	REPRESENTATION	4			
$0.80397293 \mathrm{E}+01$	$0.26443582 \mathrm{E}+02$	$0.30901556 \mathrm{E}+02$	$0.39325824 \mathrm{E}+02$	$0.63044816 \mathrm{E}+02$	
$0.74113852 \mathrm{E}+02$	$0.99367508 \mathrm{E}+02$				
EIGENVALUES FOR	REPRESENTATION	5			
-0.91065363E-14	$0.10675599 \mathrm{E}+02$	$0.14989850 \mathrm{E}+02$	$0.24870560 \mathrm{E}+02$	$0.29247885 \mathrm{E}+02$	
$0.93156502 \mathrm{E}+02$					
EIGENVALUES FOR	REPRESENTATION	6			
$0.91648862 \mathrm{E}+01$	$0.24404855 \mathrm{E}+02$	$0.39191727 \mathrm{E}+02$	$0.39637411 \mathrm{E}+02$	$0.50380072 \mathrm{E}+02$	
$0.79733633 \mathrm{E}+02$	$0.92081679 \mathrm{E}+02$				
EIGENVALUES FOR	REPRESENTATION	7			
$0.75603086 \mathrm{E}+01$	$0.20745637 \mathrm{E}+02$	$0.32486537 \mathrm{E}+02$	$0.42178187 \mathrm{E}+02$	$0.48736699 \mathrm{E}+02$	
$0.73609246 \mathrm{E}+02$	$0.76396408 \mathrm{E}+02$				
EIGENVALUES FOR	REPRESENTATION	8			
$0.93971337 \mathrm{E}+01$	$0.20082801 \mathrm{E}+02$	$0.28845175 \mathrm{E}+02$	$0.39408693 \mathrm{E}+02$	$0.45319387 \mathrm{E}+02$	
$0.71140469 \mathrm{E}+02$	$0.11491641 \mathrm{E}+03$	$0.15938635 \mathrm{E}+03$	$0.38729756 \mathrm{E}+03$		

In the next NEIGHCRYS run, the eigenvalue that is negative should be removed. In this case, the eigenvalue for representation 3 is negative and is the relevant one. (There are always 3 eigenvalues that are zero to within numerical error, for translation of the entire crystal. These are not exactly zero and so may also be negative, and are here in representations 2,3 and 5 ). It can sometimes be the case that there are 2 negative eigenvalues, and it is recommended that you remove the larger magnitude one first, reminimize the structure, check the output, and run NEIGHCRYS again to remove the other if necessary. You should never need to remove the last representation on the list as this is the totally symmetric representation.

The subsequent run (16.symmred_PAPTUX) of NEIGHCRYS is distinguished by using this value 3 to answer the questions

[^0]which produces the files with parameters for two independent naproxen molecules: dmacrys. new.mols as a replacement to be used instead of the dmacrys.mols and PAPTUX_CO1.new. dma instead of dmacrys.dma. These files are needed as input if it proves necessary to remove another representation. However, in this example, at the end of the run, a true minimum has been reached, with the fort. 12 summary file stating:

```
Valid minimisation - converged on gradients
Eigenvalue calculation is exact
Minimum passed eigenvalue test
```

Change in Hessian matrix during run 16.symmred_PAPTUX
At the start of the run with reduced symmetry, we have the negative eigenvalue appearing in the totally symmetric representation

EIGENVALUES FOR REPRESENTATION 1				
$0.54749828 \mathrm{E}+01$	$0.91665656 \mathrm{E}+01$	$0.10486225 \mathrm{E}+02$	$0.21324804 \mathrm{E}+02$	$0.24408438 \mathrm{E}+02$
$0.28940038 \mathrm{E}+02$	$0.32700849 \mathrm{E}+02$	$0.39198516 \mathrm{E}+02$	$0.39656679 \mathrm{E}+02$	$0.50404872 \mathrm{E}+02$
$0.58785206 \mathrm{E}+02$	$0.79773166 \mathrm{E}+02$	$0.92096847 \mathrm{E}+02$		
EIGENVALUES FOR	REPRESENTATION			
-0.19184654E-12	$0.41556496 \mathrm{E}+01$	$0.80411707 \mathrm{E}+01$	$0.88624634 \mathrm{E}+01$	$0.26448294 \mathrm{E}+02$
$0.26940703 \mathrm{E}+02$	$0.30916946 \mathrm{E}+02$	$0.34226134 \mathrm{E}+02$	$0.39332327 \mathrm{E}+02$	$0.40848079 \mathrm{E}+02$
$0.63075419 \mathrm{E}+02$	$0.74150025 \mathrm{E}+02$	$0.99385942 \mathrm{E}+02$		
EIGENVALUES FOR	REPRESENTATION	3		
$0.28421709 \mathrm{E}-13$	$0.75617577 \mathrm{E}+01$	$0.10677549 \mathrm{E}+02$	$0.14992172 \mathrm{E}+02$	$0.20749220 \mathrm{E}+02$
$0.24874684 \mathrm{E}+02$	$0.29262150 \mathrm{E}+02$	$0.32502922 \mathrm{E}+02$	$0.42184663 \mathrm{E}+02$	$0.48760752 \mathrm{E}+02$
$0.73621962 \mathrm{E}+02$	$0.76433558 \mathrm{E}+02$	$0.93202329 \mathrm{E}+02$		
EIGENVALUES FOR	REPRESENTATION	4		
-0.13299736E+01	-0.14210855E-13	$0.84752917 \mathrm{E}+01$	$0.93988285 \mathrm{E}+01$	$0.15629116 \mathrm{E}+02$
$0.20086029 \mathrm{E}+02$	$0.22019776 \mathrm{E}+02$	$0.28859255 \mathrm{E}+02$	$0.39428316 \mathrm{E}+02$	$0.45327300 \mathrm{E}+02$
$0.55830304 \mathrm{E}+02$	$0.71153052 \mathrm{E}+02$	$0.11497258 \mathrm{E}+03$	$0.15941309 \mathrm{E}+03$	$0.38736229 \mathrm{E}+03$
In the final report of the eigenvalues in symmetry reduction, we have a true minimum (only 3 zero eigenvalues)				
EIGENVALUES FOR REPRESENTATION 1				
$0.62821481 \mathrm{E}+01$	$0.90017777 \mathrm{E}+01$	$0.10909412 \mathrm{E}+02$	$0.21923355 \mathrm{E}+02$	$0.24717232 \mathrm{E}+02$
$0.25674871 \mathrm{E}+02$	$0.29355767 \mathrm{E}+02$	$0.37714874 \mathrm{E}+02$	$0.39091498 \mathrm{E}+02$	$0.51114580 \mathrm{E}+02$
$0.60016101 \mathrm{E}+02$	$0.78624602 \mathrm{E}+02$	$0.95300860 \mathrm{E}+02$		
EIGENVALUES FOR	Representation			
$0.17763568 \mathrm{E}-13$	$0.43762867 \mathrm{E}+01$	$0.88027414 \mathrm{E}+01$	$0.90276714 \mathrm{E}+01$	$0.27077689 \mathrm{E}+02$
$0.27322200 \mathrm{E}+02$	$0.30606861 \mathrm{E}+02$	$0.33087065 \mathrm{E}+02$	$0.35887132 \mathrm{E}+02$	$0.42707633 \mathrm{E}+02$
$0.58616835 \mathrm{E}+02$	$0.74740580 \mathrm{E}+02$	$0.10569275 \mathrm{E}+03$		
EIGENVALUES FOR	Representation			
$0.42632564 \mathrm{E}-13$	$0.80571557 \mathrm{E}+01$	$0.10755696 \mathrm{E}+02$	$0.15344159 \mathrm{E}+02$	$0.21064826 \mathrm{E}+02$
$0.23683924 \mathrm{E}+02$	$0.28396204 \mathrm{E}+02$	$0.34279322 \mathrm{E}+02$	$0.38682797 \mathrm{E}+02$	$0.49266106 \mathrm{E}+02$
$0.69790339 \mathrm{E}+02$	$0.73566111 \mathrm{E}+02$	$0.92188150 \mathrm{E}+02$		
EIGENVALUES FOR	Representation			
-0.56843419E-13	$0.28814824 \mathrm{E}+01$	$0.88057206 \mathrm{E}+01$	$0.91321059 \mathrm{E}+01$	$0.16240193 \mathrm{E}+02$
$0.19083826 \mathrm{E}+02$	$0.20499881 \mathrm{E}+02$	$0.28225705 \mathrm{E}+02$	$0.39943200 \mathrm{E}+02$	$0.42124144 \mathrm{E}+02$
$0.50393546 \mathrm{E}+02$	$0.77415267 \mathrm{E}+02$	$0.11666586 \mathrm{E}+03$	$0.15461175 \mathrm{E}+03$	$0.39235526 \mathrm{E}+03$

Note that in symmetry reduction, although the resulting structure is $Z^{\prime}=2$, the lattice energy has not been doubled, but is only slightly lower (i.e. lattice energy at the saddle point is $-134.1608 \mathrm{~kJ} / \mathrm{mol}$ (Final energy in initial minimisation in reason) and at the minimum is $-134.7353 \mathrm{~kJ} / \mathrm{mol}$ ). This is done so that automated symmetry reduction, as part of a CSP study, keeps all the structures on the same energy scale.

## XII - TEVSOD 17.pasting_TEVSOD

The NEIGHCRYS / DMACRYS combination is used for minimizing experimental crystal structures holding the conformation of the molecule rigid throughout. It is often desired to minimize a crystal structure with an alternative conformation of the molecule, such as the ab initio optimized conformation that is being used as input into a Crystal Structure Prediction study. NEIGHCRYS was written with the ability to change to a slightly different molecular structure within a crystal structure by aligning the molecule fixed axes of the new and original molecule. This will not work if there is a significant change in the molecular conformation, or the molecules are not identical. The use of the separate utility optimalpaste to produce a crystal structure which optimises the overlay of the two molecules is recommended in preference to this option.

The example chosen for this is Cyheptamide. Before beginning, NEIGHCRYS is run to set up the molecule in the local axis system. Text from the fort. 21 is then used for the GAUSSIAN input file, and GAUSSIAN is run specifying that the output should be written in atomic units. Alternatively, the output from GAUSSIAN in Angstroms can be used, but converted to Bohr with a utility such as http://bast.fr/angstrom-bohr/ The coordinates of the optimized geometry in atomic units are put into the coord_to_paste_au file with the atom labels generated by NEIGHCRYS. EVERY molecule in the crystal structure needs to appear in this file (with the sign of the Z coordinates inverted in inverted molecules), so it will look very similar to the end of the fort. 21 file.

When NEIGHCRYS is run pasting in a new molecule, the end of the fort. 21 file is first written out with the original coordinates and then with the new pasted coordinates.

## I-AXOSOW 18.defaults_AXOSOW

This example uses the same NEIGHCRYS input files as for 02.lem_will01_AXOSOW but all the filenames have been changed. When NEIGHCRYS is run, d should be the answer to the first question, and most of the rest of the questions do not need any answers as the filenames are picked up automatically.

## XIII - BT_XXV 19.largecubic_BTXXV

This is example is of a large cell, where $Z$ is 24 . The cubic space group of $\mathrm{Pa}-3$ caused problems with previous version of NEIGHCRYS, particularly as the two-component system is so large.

XIII - BT_XXV 20.largecubic_HESS_BTXXV
This is an example of reuse of the hessian calculation from a previous run. Both example 19 and example 20 use exactly the same *. dmain, except that it has been edited to include the "HESS 1 " directive in example 20, which instructs DMACRYS to write out the hessian at the end of the minimization, and use this file, if it exists, at the starting point of a new minimization. In this example, the dmahessian file is present in the files for example 20, which enables DMACRYS to set up the minimization using this hessian and so it runs with fewer iterations, and achieves exactly the same result for the minimization.

Results from 19.largecubic_BTXXV (no use of hessian)	Results from 20.largecubic_HESS_BTXXV (reuse of hessian)
Number of Iterations: 25	Number of Iterations: 10
Lattice is P Centred. Calculated Lattice Energies	Lattice is P Centred. Calculated Lattice Energies
Initial Lattice Energy: $\quad-206.0935 \mathrm{~kJ} / \mathrm{mol}$	Initial Lattice Energy: $\quad-206.0935 \mathrm{~kJ} / \mathrm{mol}$
Final Lattice Energy: $\quad-206.4054 \mathrm{~kJ} / \mathrm{mol}$	Final Lattice Energy: $\quad-206.4054 \mathrm{~kJ} / \mathrm{mol}$
$\dot{\mathrm{F}}=0.494052$	$\dot{\mathrm{F}}=0.494052$
Timing information	Timing information
Program segment seconds)	Program segment seconds)
Time to set things up................... 4.090000	Time to set things up................... 4.000000
Reciprocal space part of Ewald sum..... 29.169983	Reciprocal space part of Ewald sum..... 29.099991
Real space part of Ewald sum............. 1.940063	Real space part of Ewald sum............ 1.930038
Short range potential calculation....... 0.419922	Short range potential calculation....... 0.399963
Higher multipole energy calculation	Higher multipole energy calculation
Energy calculation...................... 76.470276	Energy calculation...................... 76.739655
First derivative chain rule............. 1.339844	First derivative chain rule............. 1.380096
Second derivative chain rule............ 49.269653	Second derivative chain rule............ 49.389481
All other program sections................ 472.390285	All other program sections................ . 130.330765
Total run time........................... 635.090027	Total run time........................... 293.269989

This shows that the energies are exactly the same at the start and end of the minimization. There is in fact no difference in the output fort. 16 files. However, the time saving is made in reducing the number of steps required to minimize the structure, and the overall saving is over $50 \%$.

Normally, the HESS directive is useful when the user is starting an optimization with a slightly different *.dmain file, e.g. with a slightly different molecular conformation, a slightly different dma, or a different cutoff, or to restart an optimization.

XIV - BT_XXIII 21.longcell_BTXXIII

In this example, an unconventional cell setting has been used with an acute angle, resulting in the molecule spanning more than 3 unit cells. NEIGHCRYS does not assign the atoms to the same molecule if this happens. This is seen in the "reasons" folder, in the section of the fort. 21 headed "Inequivalent basis atoms", where O_01_2 is not included in molecule 1.

atom	atomic	name		input	molecule	invert
index	number			name	number	flag
1	6	C_F1_1	1	C1	1	F
2	6	$\mathrm{C}_{-}^{-} \mathrm{Fl}_{-}^{-}$	2	C2	1	F
:						
39	7	N_F1_1	39	N1	1	F
40	8	$\mathrm{O}_{-}^{-} \mathrm{Fl}^{-1}$	41	O2	1	F
41	8	$\mathrm{O}^{-} \mathrm{O1}^{-} 2$	40	01	0	F
42	17	ClF1-1	42	Cl1	1	F
43	17	ClF1-2	43	C12	1	F

NEIGHCRYS is run in "extended mode" in this example, answering all the additional questions with the default values except

What value of MAXSCH do you want to use to locate whole molecules? [3]
4

The fort. 21 now has all the atoms in the molecule, and DMACRYS can run.
Note that this is not a real crystal structure, but a search-generated structure for the Blind Test, and so has many problems in the crystal structure itself. It is recommended crystal structures are reset to the conventional unit cell using a program such as PLATON (http://www.cryst.chem.uu.nl/spek/platon/) or ISOCIF (http://stokes.byu.edu/iso/isocif.php).

XV - BT_XXII 22. damped_C6_dispersion_BTXXII

In this example, the damping parameter is included in the dmacrys.mols file. Note that the repulsion-dispersion potential is of the DBUC type, and so has $C_{8}^{\tau K}$ and $C_{10}^{i \kappa}$ terms for each interaction, which are zero.

The dmacrys.mols file looks like:
MOLX 1
 ENDS
and the start of the pote_same_as_CP. dat looks like:

DBUC	$\begin{aligned} & \text { C_A1 }{ }^{\text {C_A1 }} \\ & 3.83545 \\ & 0.3533404913 \end{aligned}$	0.1704323228	0.00 .0		0.070	
ENDS						
DBUC	C_A1 C_A2					
	$3.83431-0.3752002353$	0.2174671841	0.0	0.0	0.0	70

III - KAXXAI 23.largecell_KAXXAI_30ang

This is exactly the same minimization as example 07, but rather than manually editing the *. dmain file, the larger cutoff is set with the extended question set of NEIGHCRYS. The extra question that is not answered with the default answer is:

```
What is the desired cutoff in Angstroms [15.0]
```

30

XVI - PYRDIN 24.dampedispersion_PYRDIN and 25.polarizability_PYRDIN
These illustrate the use of a non-empirical potential for pyridine in the solid state ${ }^{23}$ where the model potential had been parameterised by using a state-of-the-art methods for defining the atomic multipoles, polarizabilities and dispersion coefficients and fitting the short range terms adequately required addition forms of anisotropic repulsion. ${ }^{24}$

As in example 22, the damped dispersion parameter is included in the dmacrys.mols file, and DBUC type repulsion-dispersion potentials are used, and anisotropy is included, for example:


0	00	2	20.06	6635000				
0	20	2	$2-0.08$	8656300				
0	02	0	20.06	6635000				
2	02	0	$2-0.08$	656300				
ENDS								
DBUC $650 .$	N N1	C_C1			92.5942	1046.8489	0.00	70.00
ANIS	N N1	C						
0	$\overline{0} 0$	$\overline{1}$	10.06	6924000				
0	10	1	10.01	777100				
0	01	0	10.05	5518400				
1	01	0	$1-0.00$	961700				
0	00	2	$2-0.04$	4085600				
0	20	2	$2-0.06$	6018000				
0	02	0	20.06	6635000				
2	02	0	$2-0.08$	656300				
ENDS								

Furthermore, example 25 includes the induction energy, which is initiated through use of the Dind 1.25 directive giving the induction damping coefficient in the dmacrys.mols file and the required dmacrys.mols.pol file with the polarizabilities.

Comparing the output from the optimisations 24.dampedispersion_PYRDIN and 25.polarizability_PYRDIN, it is seen that the unit cell is no different, but that the energy is different. This is because it is not possible to carry out the perfect lattice calculation in DMACRYS including the forces due to induction. (Expert use has shown that this approximation has very little effect on the structure. ${ }^{25}$ ) The lattice energy minimization part of the calculation is carried out neglecting the forces from the induction. However, DMACRYS calculates the induction energy both at the start and at the end, and adds this term to the total initial and final lattice energy.


Within the PYR1opt. dmaout file, the induced moments and induction energy are calculate for the initial crystal structure and the final crystal structure. These energies are included in the "Initial Lattice Energy" and "Final Lattice Energy" reports in the fort. 12, and hence, as shown above, the lattice energy components differ only in the induction energy between 24.dampedispersion_PYRDIN and 25.polarisability_PYRDIN.

## References

(1) Price, S. L.; Leslie, M.; Welch, G. W. A.; Habgood, M.; Price, L. S.; Karamertzanis, P. G.; Day, G. M., Modelling Organic Crystal Structures using Distributed Multipole and Polarizability-Based Model Intermolecular Potentials. Physical Chemistry Chemical Physics 2010, 12, (30), 8478-8490.
(2) Day, G. M.; Cooper, T. G.; Cruz-Cabeza, A. J.; Hejczyk, K. E.; Ammon, H. L.; Boerrigter, S. X. M.; Tan, J.; Della Valle, R. G.; Venuti, E.; Jose, J.; Gadre, S. R.; Desiraju, G. R.; Thakur, T. S.; van Eijck, B. P.; Facelli, J. C.; Bazterra, V. E.; Ferraro, M. B.; Hofmann, D. W. M.; Neumann, M.; Leusen, F. J. J.; Kendrick, J.; Price, S. L.; Misquitta, A. J.; Karamertzanis, P. G.; Welch, G. W. A.; Scheraga, H. A.; Arnautova, Y. A.; Schmidt, M. U.; van de Streek, J.; Wolf, A.; Schweizer, B., Significant progress in predicting the crystal structures of small organic molecules - a report on the fourth blind test. Acta Crystallographica Section B - Structural Science 2009, 65, (2), 107-125.
(3) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Gaussian Inc.: Wallingford CT, 2004.
(4) Stone, A. J.; Alderton, M., Distributed multipole analysis - Methods and applications (Reprinted from Molecular Physics, vol 56, pg 1047-1064, 1985). Molecular Physics 2002, 100, (1), 221-233.
(5) Misquitta, A. J.; Welch, G. W. A.; Stone, A. J.; Price, S. L., A first principles solution of the crystal structure of C6Br2CIFH2. Chemical Physics Letters 2008, 456, (1-3), 105-109.
(6) Uzoh, O. G.; Cruz-Cabeza, A. J.; Price, S. L., Is the Fenamate Group a Polymorphophore? Contrasting the Crystal Energy Landscapes of Fenamic and Tolfenamic Acids. Crystal Growth \& Design 2012, 12, (8), 4230-4239.
(7) Allen, F. H.; Kennard, O.; Watson, D. G., Tables of bond lengths determined by x-ray and neutron diffraction. Part 1. Bond lengths in Organic compounds. Journal of the Chemical Society-Perkin Transactions 2 1987, (12), S1-S19.
(8) Bardwell, D. A.; Adjiman, C. S.; Arnautova, Y. A.; Bartashevich, E.; Boerrigter, S. X. M.; Braun, D. E.; CruzCabeza, A. J.; Day, G. M.; Della Valle, R. G.; Desiraju, G. R.; van Eijck, B. P.; Facelli, J. C.; Ferraro, M. B.; Grillo, D.; Habgood, M.; Hofmann, D. W. M.; Hofmann, F.; Jose, K. V. J.; Karamertzanis, P. G.; Kazantsev, A. V.; Kendrick, J.; Kuleshova, L. N.; Leusen, F. J. J.; Maleev, A. V.; Misquitta, A. J.; Mohamed, S.; Needs, R. J.; Neumann, M. A.; Nikylov, D.; Orendt, A. M.; Pal, R.; Pantelides, C. C.; Pickard, C. J.; Price, L. S.; Price, S. L.; Scheraga, H. A.; van de Streek, J.; Thakur, T. S.; Tiwari, S.; Venuti, E.; Zhitkov, I. K., Towards crystal structure prediction of complex organic compounds - a report on the fifth blind test. Acta Crystallographica Section B-Structural Science 2011, 67, 535-551.
(9) Braun, D. E.; Bhardwaj, R. M.; Florence, A. J.; Tocher, D. A.; Price, S. L., Complex Polymorphic System of Gallic Acid-Five Monohydrates, Three Anhydrates, and over 20 Solvates. Crystal Growth \& Design 2013, 13, (1), 19-23.
(10) Kazantsev, A. V.; Karamertzanis, P. G.; Adjiman, C. S.; Pantelides, C. C., Efficient Handling of Molecular Flexibility in Lattice Energy Minimization of Organic Crystals. Journal of Chemical Theory and Computation 2011, 7, (6), 1998-2016.
(11) Wu, H.; Habgood, M.; Parker, J. E.; Reeves-McLaren, N.; Cockcroft, J. K.; Vickers, M.; West, A. R.; Jones, A. G., Crystal structure determination by combined synchrotron powder X-ray diffraction and crystal structure prediction: 1: 1 L-ephedrine D-tartrate. CrystEngComm 2013, 15, (10), 1853-1859.
(12) Day, G. M.; Price, S. L.; Leslie, M., Elastic constant calculations for molecular organic crystals. Crystal Growth \& Design 2001, 1, (1), 13-27.
(13) Day, G. M.; Price, S. L.; Leslie, M., Atomistic calculations of phonon frequencies and thermodynamic quantities for crystals of rigid organic molecules. Journal of Physical Chemistry B 2003, 107, (39), 10919-10933.
(14) Day, G. M.; Price, S. L., Properties of Crystalline Organic Molecules. In Handbook of Elastic Properties of Solids, Liquids and Gases. Volume III: Elastic Properties of Solids: Biological and Organic Materials, Earth and Marine Sciences, Levy, M., Ed. Academic Press: New York, 2001; Vol. 3, pp 3-50.
(15) Nyman, J.; Day, G. M., Static and lattice vibrational energy differences between polymorphs. Crystengcomm 2015, 17, (28), 5154-5165.
(16) Nyman, J.; Day, G. M., Modelling temperature-dependent properties of polymorphic organic molecular crystals. Physical Chemistry Chemical Physics 2016, 18, (45), 31132-31143.
(17) Day, G. M.; Price, S. L., A nonempirical anisotropic atom-atom model potential for chlorobenzene crystals. Journal of the American Chemical Society 2003, 125, (52), 16434-16443.
(18) Jongenelis, A. P. J. M.; van der Berg, T. H. M.; Schmidt, J.; van der Avoird, A., Vibron band structure in chlorinated benzene crystals: lattice dynamics calculations and Raman spectra of 1,4-dichlorobenzene. Journal of Physics: Condensed Matter 1989, 1, (31), 5051.
(19) Ridout, J.; Probert, M. R., High-Pressure and Low-Temperature Polymorphism in C-H center dot center dot center dot F-C Hydrogen Bonded Monofluorotoluenes. Crystal Growth \& Design 2013, 13, (5), 1943-1948.
(20) Kazantsev, A. V.; Karamertzanis, P. G.; Adjiman, C. S.; Pantelides, C. C.; Price, S. L.; Galek, P. T. A.; Day, G. M.; Cruz-Cabeza, A. J., Successful prediction of a model pharmaceutical in the fifth blind test of crystal structure prediction. International Journal of Pharmaceutics 2011, 418, (2), 168-178.
(21) Misquitta, A. J.; Stone, A. J. CamCASP: a program for studying intermolecular interactions and for the calculation of molecular properties in distributed form, University of Cambridge, http://www-
stone.ch.cam.ac.uk/programs.html\#CamCASP: 2007.
(22) Braun, D. E.; Ardid-Candel, M.; D'Oria, E.; Karamertzanis, P. G.; Arlin, J. B.; Florence, A. J.; Jones, A. G.; Price, S. L., Racemic Naproxen: A Multidisciplinary Structural and Thermodynamic Comparison with the Enantiopure Form. Crystal Growth \& Design 2011, 11, (12), 5659-5669.
(23) Aina, A. A.; Misquitta, A. J.; Price, S. L., From dimers to the solid-state: Distributed intermolecular force-fields for pyridine. The Journal of Chemical Physics 2017, 147, (16), 161722.
(24) Misquitta, A. J.; Stone, A. J., Ab Initio Atom-Atom Potentials Using CAMCASP: Theory and Application to Many-Body Models for the Pyridine Dimer. Journal of Chemical Theory and Computation 2016, 12, (9), 4184-4208. (25) Aina, A.; Misquitta, A.; Price, S., From dimers to the solid-state: Distributed intermolecular force-fields for pyridine. Journal of Chemical Physics 2017, 147, (16).


[^0]:    Input zero for no symmetry subgroup or $n$ to remove representation $n$
    3
    CVECTOR 5.51670

    Symmetry reduction for representation 3 complete
    input zero to end symmetry reduction or $n$ to remove new representation $n$

